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Unstructured pressure-correction solver based on a
consistent discretization of the Poisson equation
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SUMMARY

A finite volume incompressible flow solver is presented for three-dimensional unsteady flows based on an
unstructured tetrahedral mesh, with collocation of the flow variables at the cell vertices. The solver is
based on the pressure-correction method, with an explicit prediction step of the momentum equations
followed by a Poisson equation for the correction step to enforce continuity. A consistent discretization
of the Poisson equation was found to be essential in obtaining a solution. The correction step was solved
with the biconjugate gradient stabilized (Bi-CGSTAB) algorithm coupled with incomplete lower–upper
(ILU) preconditioning. Artificial dissipation is used to prevent the formation of instabilities. Flow
solutions are presented for a stalling airfoil, vortex shedding past a bridge deck and flow in model alveoli.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unstructured meshes have become very popular in computational fluid dynamics (CFD) and
many compressible flow solvers exist for these based on different methods. For incompressible
flow, there exist a number of finite element codes using unstructured meshes. See, for example,
Guermond and Quartapelle [1], Ravachol [2], Ramamurti and Löhner [3] and Rida et al. [4].
In comparison, the body of literature is less developed for finite volume methods as can be seen
from the summary of published solvers shown in Table I. Six of the schemes are based on the
pressure-correction method of Harlow and Welch [5] marker-and-cell (MAC) or on a similar
principle—the SIMPLE schemes of Patankar and Spalding [6] or the pressure-correction (PC)
scheme of Hirt and Cook [7]. The artificial compressibility (AC) method of Chorin [8] is used
for the remaining two schemes. The table also shows whether the solvers are steady or unsteady,
two- or three-dimensional and the type of variable storage used. From this it can be seen
that both of the unsteady flow solvers make use of cell-centred storage, which is, on
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average, five times as expensive in memory requirements as vertex storage for unstructured
meshes; whereas the schemes making use of vertex storage are for steady flow only. This paper
seeks to extend the current table by developing a three-dimensional unsteady solver using
vertex storage.

Before describing the flow solver, the reason that the pressure-correction solver of Watterson
[9] is steady will be explored. This will lead into a discussion of the issues related to collocated
vertex storage for the pressure Poisson equation (PPE), which are of paramount importance in
the formulation of the present solver.

In Watterson [9], the Poisson equation for pressure is solved approximately with two Jacobi
iterations. Numerical experiments show that these iterations have a smoothing effect on the
initial guess but do not solve the equation. Indeed, results in Reference [10] suggest that the
solver works equally well without any iterations of the Poisson solver. The initial guess is given
by

p %k=
−9 ·u

Sr

Dt
+DtCk

(1)

where Sr accounts for compressibility effects. Ck is a geometric coefficient representing the
influence of the pressure correction at node k on the Laplacian at that node. Substituting for
this term with the use of approximations for a regular mesh, and assuming incompressibility,
the equation for the initial guess reduces to

p %k
Dt
:−

� hk

2Dt
�2

9 ·u (2)

where hk is a representative radius for the control volume. This is equivalent to the artificial
compressibility method with an artificial speed of sound b given by

Table I. Summary of unstructured incompressible schemes.

SchemeYear Two-/three-Author Discretization/variableSteady/
dimensional storageunsteady

2D Semi-staggered1995 MACDespotis and S
Tsangaris [28]

Semi-staggeredThomadakis and 1995 SIMPLE S 2D
Leschziner [29]

Collocated cell-centred2DSSIMPLE1997Murthy Mathur [30]
SSIMPLEC1996 2DDavidson [31] Collocated cell-centred

Collocated vertexAnderson et al. [32] 1996 AC S 3D
Watterson [9] 1994 PC S 3D Collocated vertex

Collocated cell-centred2D(3D)UACWeiss and Smith [33] 1995
Jiang and Przekwas [34] 1994 SIMPLEC U 2D(3D) Collocated cell-centred
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b=
hk

2Dt
(3)

which shows that the pressure-correction step is actually equivalent to an artificial compress-
ibility step with an automatic limit on the propagation distance of pressure waves through the
domain. The equivalence between pressure-correction and artificial compressibility is further
described in Peyret and Taylor [11], where it is shown that artificial compressibility can be
thought of as a method for solving the PPE.

The other pressure correction flow solvers in Table I also only solve the PPE approximately,
such that the initial guess remains the dominant factor in the approximate solution. This
suggests that they too function more as artificial compressibility solvers than as pressure
correction ones, where the initial guess and any relaxation factors applied determine the
functioning of the scheme.

The reason that this is so, and that the pressure-correction equation is usually only solved
approximately, is that there is an inherent conflict between three factors: obtaining an accurate
Laplacian operator, ensuring the compatibility relation and preventing odd–even decoupling
of the flow solution. Different schemes addressing these issues will now be reviewed for
structured meshes.

The staggered MAC arrangement of variables is used on structured meshes as it automati-
cally guarantees the compatibility relation and prevents odd–even decoupling. This is very
expensive and cumbersome on unstructured meshes such that collocation of variables is
desirable. Rhie and Chow [12] were the first to describe a solver using collocation of variables
on curvilinear grids. This was based on a special interpolation procedure at the cell faces so at
to satisfy the compatibility relation and ensure stability by preventing odd–even decoupling.
For unstructured meshes, however, it was found that this procedure was not sufficient in
satisfying the compatibility relation owing to the truncation errors present in arbitrary meshes.

Briley [13] suggested the addition of correction terms to the source term of the Poisson
equation for structured meshes in order to artificially satisfy the compatibility relation. An
alternative solution by Henshaw [14] is to augment the system of equations with one extra
equation, which could be designed specifically to obtain a solvable system of equations.
Sundaresan and Deshpande [15] reported that the satisfaction of the compatibility relation per
se is not a crucial factor, but the satisfaction of the continuity constraint is crucial. This was
described by Gresho and Sani [16] who linked the compatibility relation (‘solvability con-
straint’) to the satisfaction of mass conservation and put the stress on the latter.

On a collocated mesh, whether structured or unstructured, satisfaction of the compatibility
relation is guaranteed only by a discretization of the Laplacian operator in two parts as the
divergence of a gradient operator, where the divergence operator is the same as that used to
calculate flow conservation and where the gradient operator is the same as that used to obtain
the velocity corrections. When both operators are defined on a control volume consisting of all
cells around a node and collocation of variables is used, this leads to an extended discretization
of the Laplacian involving all second neighbours of a node. Sotiropoulos and Abdallah [17],
working on Cartesian meshes, added correction terms to their compact discretization of the
Laplacian to conform it to an extended discretization. The extended discretization was,
however, very unstable because it was totally transparent to wiggles in the pressure field. Tafti
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[18] solved this problem for structured meshes by developing different gradient and divergence
operators that contained higher-order terms designed to prevent odd–even decoupling.

2. FORMULATION OF THE FLOW SOLVER

The present work is concerned with the fully incompressible Navier–Stokes equations as
described by

(u
(t

+9 ·(u�u)+9p=9·t (4)

9 ·u=0 (5)

r=constant (6)

where t is the shear stress tensor.
The solution of the following semi-discretized system of equations is sought:

un+1−un

Dt
= −9 ·(u�u)n−9pn+9 ·tn (7)

9 ·un+1=0 (8)

The flow solver follows the pressure-correction method of Hirt and Cook [7], with an explicit
prediction step of the momentum equation followed by a correction step to satisfy the
continuity equation. The predicted velocity is evaluated from Equation (9) and will be used in
Equation (10) to obtain the final velocity. Note that the pressure term is at the correct time
level, as discussed in Gresho et al. [19].

u*=un−Dt(9 ·(u�u)n+9pn−1−9 ·tn) (9)

un+1=u*+u% (10)

Taking the divergence of the semi-discretized momentum equation (7) and substituting the
relations for the predicted velocity in Equations (9) and (10), yields the PPE (Equation (11))
in terms of the pressure-correction (Equation (12))

9 ·9p %=
9 ·u*
Dt

(11)

pn=pn−1+p % (12)
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The PPE is solved and the velocity correction is obtained from Equation (13) to update the
velocity as described above

u%= −Dt9p % (13)

The stability limit for forward Euler integration is given by a combined advection–
diffusion limit as described by Gresho et al. [20]. To preserve time accuracy, the minimum
time step over the whole domain is used as a global time step, which is very restrictive.

The sub-cycling procedure of Gresho et al. [20] was tested in an attempt to increase the
time step between pressure-correction steps. The prediction step is repeated a number of
times before carrying out a single correction step—with the advantage that the prediction
steps are much cheaper than the correction step and therefore a larger effective time step is
obtained at a lower cost. This, however, was not found to increase the allowable time step
between pressure-correction steps. Gresho et al. suggested halting the sub-cycling procedure
when the norm of the divergence of the prediction velocity reaches a certain threshold.
Taking this as a criterion in the present solver shows that larger time steps cannot be
obtained as the norm of the divergence increases very rapidly with each sub-cycle. This is
due to the much larger truncation errors associated with unstructured meshes compared
with structured or regular meshes. The simple forward Euler time integration was therefore
retained.

Equation (14) was used for the time step, with an empirically defined c=0.5, where Dl is
the smallest cell height around a node and �u� is the magnitude of the velocity at that node

Dtglobal=Dtmin=c
�Dl

�u�
�

min

(14)

3. BOUNDARY CONDITIONS

Spatial boundary conditions are applied for the velocity during the prediction step and for
both the velocity and the pressure during the correction step. Globally, the inflow velocity
is specified, the no-slip condition is enforced on viscous walls and the velocity is tangential
at inviscid walls while the pressure is fixed at outflow.

During the prediction step, the velocity is specified at the inflow and on viscous walls
and is extrapolated elsewhere. The correction step affects both the momentum and the
continuity equations, such that boundary conditions need to be consistent and satisfy both
of these equation at the same time. Dirichlet conditions are enforced on the pressure-
correction at outflow, thereby specifying the exit pressure. Neumann conditions on the
pressure-correction are used elsewhere. These are designed such that at inflow a zero
velocity correction is obtained while at solid boundaries the wall-normal velocity correction
balances out the normal component of the predicted velocity leading to tangential velocities
at the new time step as shown in Equation (15).
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Inflow b.c. 9p % ·n=0
Outflow b.c. p %=0

Wall b.c. 9p % ·n=
u* ·n
Dt

(15)

The above condition on the pressure-correction at the wall is equivalent to a condition of
zero acceleration on the normal component of the momentum equations as shown in Equation
(16), such that the conditions are consistent with each other

(−9 ·(u�u)n−9pn+9 ·tn) ·n=
�un+1−un

Dt
�

·n=0 (16)

The normal at a boundary was taken to be an area-weighted average of the normals of each
boundary face around a node. Specifying a zero normal velocity component with this
definition can be seen to be different from specifying zero mass flow through the individual
faces, such that some leakage can be expected to occur on highly curved boundaries and
especially on boundary nodes that are at the edges between two boundary surfaces. This
introduced a global mass flux error in the flow solution, although this was usually less than
0.1% of the mass flow.

The initial condition is taken to be a divergence-free flow. In practice, a potential flow
solution is used to begin the solution if a beginning solution is not available. This is equivalent
to solving flow for an impulse start, as shown by Batchelor [21], and discussed in depth in
Reference [19].

4. SPATIAL DISCRETISATION AND THE POISSON SOLVER

The flow variables are collocated at cell vertices and assumed to be piecewise linear over each
tetrahedron. The prediction step, Equation (7), is discretized using the integral form of the
equations following the finite volume procedure as described by Dawes [22]. Average face
fluxes for each face f are summed over the control volume consisting of all cells j around a
node k, as shown in Figure 1. At boundaries, the half volume consisting of all cells touching
on a boundary node is used. This is depicted in two dimensions in Figure 2, where fluxes are
summed over the boundary faces as well as those opposite to the node.

The use of centred spatial discretization with forward Euler time integration leads to an
underdiffusive scheme. Balancing tensor diffusivity, see Gresho et al. [20], could be used to
offset this. In the present work, however, artificial dissipation is used as a simple yet effective
expedient as described in the next section.

Discretization of the Poisson equation is the critical step in the formulation of a pressure-
correction solver, as described above. In order to satisfy the continuity constraint exactly,
irrespective of mesh quality, the gradient operator used as the first step of the Laplacian in
Equation (11) must be the same as the operator used to obtain the final velocity correction in
Equation (13). This must also be the same as the operator used to define the Neumann
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Figure 1. Finite volume discretization.

Figure 2. Discretization of Neumann boundary conditions.

boundary conditions in Equation (15). For the velocity correction to balance the divergence
field of the prediction step, the divergence operator on the right- and left-hand sides of
Equation (11) must also be the same. The finite volume procedure described above is used for
both the gradient and the divergence operator. Figure 3 shows the flux sums used to obtain the
gradient operator at a node in two dimensions. On the right, in dashed lines is the control
volume contributing to the gradient operator and in solid lines is the new control volume for
the divergence operator at the centre node. This can be seen to lead to an extended
discretization of the Laplacian operator similar to the Cartesian operator of Sotiropoulos and
Abdallah, but making use of all second neighbours to a node, not just those in the cardinal
directions. While this discretization is necessary to preserve consistency of the pressure and
velocity corrections, it is prone to pressure–velocity decoupling, which will be addressed in the
section on artificial dissipation. For the boundary conditions, the half-volume described above
is used to obtain the gradient operator at a boundary node.

The PPE is often solved with stationary iterative methods, such as Jacobi or Gauss–Seidel
iteration, which rely on diagonal dominance for convergence. The diagonal term of the
Laplacian is equal to the sum of the off-diagonal terms. On structured meshes, all of these are
positive, such that the system of equations is neutrally dominant and relies on boundary
conditions for dominance. For unstructured meshes, however, numerical experiments show
that these terms are often negative, even for seemingly regular meshes, such that the system of
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Figure 3. Extended discretization of Laplacian operator.

equations is not diagonally dominant. The boundary conditions make matters worse as the
Neumann conditions have large off-diagonal terms, thereby excluding the use of stationary
iterative methods.

Conjugate gradient solvers are often used for the PPE. The basic conjugate gradient solver
works very well for symmetric matrices. While the terms of the Laplacian operator are
symmetric, the boundary conditions introduce asymmetric terms so that the biconjugate
gradient stabilized (Bi-CGSTAB) method of van der Vorst [23] is used.

The Laplacian of the pressure-correction can be performed by evaluating the divergence and
gradient operators sequentially using flux sums over the control volume. In practice, however,
it was found that it was up to eight times faster to store coefficients explicitly and perform the
Laplacian as a matrix multiplication. Coefficients for the effect of each node on the Laplacian
at a node connected to it by an edge, or at the node itself, are calculated and stored. This
incurred a substantial memory overhead as coefficients are stored for all second neighbours.
Because CPU time, rather than memory, was the limiting factor, this was deemed acceptable.
The coefficients were stored in the sparse column format. This enabled the use of ILU
preconditioning using zero fill-in, which in this case corresponds to using all second neighbours
of a node. The actual preconditioner used was taken from the netlib library.

Reverse Cuthill–McKee renumbering [24] was used to speed up the flow solver in two ways.
First, it reduces the bandwidth of the Laplacian matrix by up to a factor of ten, such that the
ILU preconditioner is a much improved approximation of the Laplacian matrix. This leads to
a factor of reduction of approximately seven in the number of iterations required to reach
convergence for a number of test cases. Second, the matrix multiplication is performed
approximately twice as fast because a more efficient node numbering leads to more of the
multiplied terms being within the memory cache.
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5. ARTIFICIAL DISSIPATION

The solution scheme uses forward Euler integration with centred finite volume discretization,
which is known to be underdiffusive such that artificial dissipation is necessary on the
momentum equations to preserve stability. Fourth-order edge sum smoothing is used based on
the work of Mavriplis [25]. A second difference is constructed as an approximation to the
Laplacian using the edge sum procedure described by Equation (17). For a variable w, defined
at all nodes, the second difference is the sum of the difference over all edges connecting the
central node k to its first neighbours n.

d2wk=%
n

[wk−wn ] (17)

The process is then repeated with the inclusion of scaling terms in order to obtain a fourth
difference.

d4wk=e4

Dt
VolCV

%
n

�Lk+Ln

2
�

[d2wk−d2wn ] (18)

Lk= %
faces

�u·DA�+a �DA� (19)

VolCV is the volume of all the cells around node k. DA is the area vector of a cell face on the
outside of the control volume around a node, with the summation carried out over all of these.
In Mavriplis, a is the speed of sound and Lk is an approximation to the maximum eigenvalue
for the Euler equations for compressible flow. This is no longer applicable for incompressible
flow. However, a is used as an empirical constant to preserve smoothing in stagnation regions
and was assigned a value of 400. The smoothing parameter e4 was empirically set to 0.0001,
with some variation based on the individual test cases. Artificial dissipation is added to the
velocity field on the right-hand side of the prediction step (9) ensuring that continuity is not
corrupted by the smoothing.

Smoothing was essential for pressure as the extended discretization of the Laplacian is
totally transparent to wiggles leading to velocity–pressure decoupling. This was added
explicitly when the pressure field was updated with the pressure correction in Equation (12)
and was found to control instabilities without corrupting the solution. It in effect enforces an
extra requirement implicit in the pressure-correction approximation—that the pressure field
has a smooth and continuous second derivative.

6. VALIDATION

The order of accuracy of the flow solver was verified on the two-dimensional inviscid flow over
a hump for an extruded mesh three nodes thick. Calculations were performed on three
different meshes with regular equilateral cells in the x–y plane, containing (6×16×3),
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(11×31×3) and (21×61×3) nodes. Two different measures of loss were used, a global one
and one based on the local production of stagnation pressure loss.

The global loss coefficient was obtained by integrating the stagnation pressure loss at the
exit with respect to the mass flux, as described by

Ypg=
1

1
2

rU1
2

&
exit

(Po−Po1) dm;&
exit

dm;
(20)

The second measure was obtained at every node by summing the mass integrated fluxes of
stagnation pressure of the control volume, as defined by

YpCV=
1

1
2

rU1
2

% (Po−Po1)Dm;

% Dm;
(21)

A global figure was obtained from this measure by taking the root-mean-square (r.m.s.) of
the nodal values.

The resulting loss coefficients are plotted on a logarithmic scale versus mesh spacing in
Figures 4 and 5. The gradient of Ypg was 3.0 and that of YpCV was 1.7. A value of 3.0 is very
high for a solver that uses only second-order accurate discretizations for the convection and
viscous fluxes. A value of 1.7 is to be expected from a second-order accurate flow solver, and
is lower than 2.0 due to the inaccuracies introduced by the irregularity of the mesh and due to
the artificial dissipation scheme used. Ypg was found to yield a less consistent measure of the
order of accuracy of the solver on a range of different flow solutions. This is due to its
sensitivity to very small mass flow leakages in the domain. For this particular case, there is
leakage along the edges between the hump and the side walls of the mesh as discussed above.

A laminar boundary layer was calculated in order to test the basic viscous capability of the
solver. The domain extended one chord length upstream of the leading edge and 2.6 chord
lengths in the normal direction. The mesh contained roughly ten nodes in the boundary layer.
Figure 6 shows the growth of the displacement and momentum thicknesses versus the ideal
Blasius solution, denoted by circles, showing good agreement between the two.

Unsteady vortex shedding behind a circular cylinder was then calculated to validate the
unsteady behaviour of the flow solver. Different domain sizes of (10×20), (25×30) and
(35×50) diameters were calculated, with the last two showing very little variation suggesting
that blockage effects had become negligible. A grid refinement study was also performed using
meshes with 1066, 2771, 4000 and 6893 nodes per x–y plane. There was negligible variation in
the results for the last three meshes. The results presented were calculated on the mesh with
4000 nodes per plane. The Strouhal number obtained at different Reynolds numbers is shown
in Figure 7. They are slightly underpredicted in the range below 500. This may be attributed
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Figure 4. Total pressure loss coefficient Ypg versus relative mesh spacing. Gradient=3.0.

to the fact that the flow solver is first-order accurate in time whereas the results of Rosenfeld
et al. [26], for example, were obtained with second-order accuracy in time. The forward Euler
integration is underdiffusive but the addition of artificial dissipation leads to an increase in the
actual viscosity, leading to lower values of the predicted Strouhal number.

7. RESULTS

Results were calculated for three test cases: a stalling airfoil, flow past a bridge deck and flow
in model alveoli.

In the first case, the dynamic stall of flow at a Reynolds number of 1000 over a NACA0012
airfoil at an incidence of 34° was calculated. The results are compared with those of Guermond
and Quartapelle [1] in Figure 8, showing very good agreement with their two-dimensional flow
solver.

Flow over the bridge deck of the Great Belt East suspension bridge under construction in
Denmark was calculated for the second case. The design of long span bridges is limited by the
wind-induced motions of the bridge, leading to mounting interest in predicting the lift and drag
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Figure 5. Total pressure loss coefficient YpCV versus relative mesh spacing. Gradient=1.7 respectively.

Figure 6. Growth of a laminar boundary layer versus streamwise distance. The exact Blasius solution is
denoted by � for comparison.

forces as well as the Strouhal numbers for flow over these geometries on both steady meshes
and on moving meshes. For the latter, the calculations are coupled with finite element
calculations of the bridge movements. Results are presented in Table II alongside the
experimental results of Larsen [27]. The Strouhal number is correctly predicted. The drag
coefficient is underpredicted because the crash barriers were not included in the calculation
and no turbulence model was used. Figure 9 shows streamlines along with shading of vorticity.

While the test cases presented so far have been two-dimensional, they were calculated on
three-dimensional meshes with three parallel planes of nodes. To demonstrate the three-
dimensional capability of the code, the third case involved the preliminary calculation of flow

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 463–478
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Figure 7. Strouhal number versus Reynolds number for vortex shedding behind a cylinder (from
Rosenfeld et al. [26]).

Figure 8. Pressure coefficient contours at T=1.6. Left: results of Guermond and Quartapelle [1]; right:
current results (contour interval Cp=0.23).

in a model alveoli geometry calculated with the same flow solver as the two-dimensional cases.
There is increasing use of CFD in biofluids simulation, with interest in the unsteady nature of
flow in the lungs due to opposite considerations—the desire to maximize drug transport from
inhalers and the estimation of the effects of deposition of particulates pollution. Figure 10 shows
stream ribbons for the steady low Reynolds number flow in a geometry representing several
alveoli.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 463–478
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Table II. Strouhal number, drag coefficient and lift coefficient for the Great Belt East suspension
bridge section.

Strouhal r.m.s. (CD) CLmax
CLmin

r.m.s. (CL) A6 (CL)
number

0.17 0.38 0.237 −0.120 0.14Present paper 0.05
0.16 0.54 — — —Larsen [27] 0.01

Figure 9. Instantaneous streamlines and vorticity shading for flow past the Great Belt East suspension
bridge.

Figure 10. Model alveoli geometry, shading of ribbons with x-velocity.
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8. CONCLUSION

A flow solver was developed for unsteady, incompressible, three-dimensional flow for unstruc-
tured meshes using collocation of variables at the cell vertices. The method was based on the
pressure-correction method. A consistent discretization of the Laplacian operator was found to
be essential in obtaining the correct solution of the Poisson equation for pressure. The
boundary conditions imposed on this equation were designed so as to be consistent with the
conditions on the momentum equations.

The speed of the code is determined by the computational cost of solving the Poisson
equation and by the size of the time step used for the prediction step. Smoother meshes and/or
more regular operators may enable increased time steps for the predicted velocity. Different
preconditioning techniques as well as renumbering techniques may yield improvements in the
robustness of the Poisson solver and its convergence.

Turbulence models were not implemented in the current work. In order to extend the
applicability of the flow solver, this should be performed using one of the standard models.

While the flow solver is time accurate, moving meshes were not implemented. This may be
the next step of interest to calculate an oscillating bridge or a breathing lung.
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